case control research question examples

Outbreak Investigations

  •   1  
  • |   2  
  • |   3  
  • |   4  
  • |   5  
  • |   6  
  • |   7  
  • |   8  
  • |   9  
  • |   10  

Learn More sidebar

All Modules

Example of a Case-Control Study

Within a short period of time 20 cases of hepatitis A were identified in the Marshfield area. The epidemic curve suggested a point source epidemic, and the spot map showed the cases to be spread across the entire South Shore of Massachusetts, although the pattern suggested a focus near Marshfield. Hypothesis-generating interviews resulted in five food establishments that were candidate sources. Moreover, the disease was rare, so that even if they interviewed a sample of patrons at each of the restaurants, it is most likely that few, if any would have had recent hepatitis, even from the responsible restaurant.

In a situation like this a case-control design is a much more efficient option. The investigators identified as many cases as possible (19 agreed to answer the questionnaire), and they selected a sample of 38 non-diseased people as a comparison group (the controls). In this case, the "controls" were non-diseased people who were matched to the cases with respect to age, gender, and neighborhood of residence. Investigators then ascertained the prior exposures of subjects in each group, focusing on food establishments and other possibly relevant exposures they had had during the past two months.

Given these hypothetical results, the odds that someone who ate a Papa Gino's was a case were 10/19, while the odds that someone not exposed to Papa Gino's became a case were 9/19. These odds are quite similar, and the odds ratio is close to 1.0. The odds ratio can be interpreted the same way as a risk ratio.

Odds Ratio = (10/19) / (9/19) = 1.1

This certainly provides no compelling evidence to suggest an association with Papa Gino's, but, as we did with the risk ratio, we could compute a 95% confidence interval for the odds ratio, and we could also compute a p value. In this case the 95% confidence interval is 0.37 to 3.35, and p= 0.85.

In contrast, consider the findings for Ron's Grill:

For Ron's Grill the odds ratio would be computed as follows:

Odds Ratio = (18/7) / (1/29) = 75

This suggests that patrons of Ron's Grill had 75 times the risk of being a case compared to those who did not eat at Ron's. The other three restaurants that had been suspects had odds ratios that were close to 1.0. This certainly provides strong evidence that a Ron's Grill was the source of the outbreak, and further investigation confirmed that one of the food handlers at Ron's had recently had a subclinical case of hepatitis A.

In case-control studies, one of the most difficult decisions is how to select the the controls. Ideally they should be non-diseased people who come from the same source population as the cases, and, aside from their outcome status, they should be comparable to the cases in order to avoid selection bias. Note that in the Marshfield case-control study the controls were selected in a way to ensure that they were comparable with respect to age and gender and lived in similar neighborhoods.

For more information about the conduct and analysis of case-control studies, please see the online modules on:

For more information on developing questionnaires for outbreak studies, see:

return to top | previous page | next page

Content ©2016. All Rights Reserved. Date last modified: May 3, 2016. Wayne W. LaMorte, MD, PhD, MPH

Study Design 101

A study that compares patients who have a disease or outcome of interest (cases) with patients who do not have the disease or outcome (controls), and looks back retrospectively to compare how frequently the exposure to a risk factor is present in each group to determine the relationship between the risk factor and the disease.

Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

Case control studies are also known as "retrospective studies" and "case-referent studies."

Disadvantages

Design pitfalls to look out for

Care should be taken to avoid confounding, which arises when an exposure and an outcome are both strongly associated with a third variable. Controls should be subjects who might have been cases in the study but are selected independent of the exposure. Cases and controls should also not be "over-matched."

Is the control group appropriate for the population? Does the study use matching or pairing appropriately to avoid the effects of a confounding variable? Does it use appropriate inclusion and exclusion criteria?

Fictitious Example

There is a suspicion that zinc oxide, the white non-absorbent sunscreen traditionally worn by lifeguards is more effective at preventing sunburns that lead to skin cancer than absorbent sunscreen lotions. A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to zinc oxide or absorbent sunscreen lotions.

This study would be retrospective in that the former lifeguards would be asked to recall which type of sunscreen they used on their face and approximately how often. This could be either a matched or unmatched study, but efforts would need to be made to ensure that the former lifeguards are of the same average age, and lifeguarded for a similar number of seasons and amount of time per season.

Real-life Examples

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study . Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 10 (6), 603-611. https://doi.org/10.5664/jcsm.3780

This pilot study explored the impact of exposure to daylight on the health of office workers (measuring well-being and sleep quality subjectively, and light exposure, activity level and sleep-wake patterns via actigraphy). Individuals with windows in their workplaces had more light exposure, longer sleep duration, and more physical activity. They also reported a better scores in the areas of vitality and role limitations due to physical problems, better sleep quality and less sleep disturbances.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study . Headache, 58 (10), 1530-1540. https://doi.org/10.1111/head.13423

This case-control study compared serum vitamin D levels in individuals who experience migraine headaches with their matched controls. Studied over a period of thirty days, individuals with higher levels of serum Vitamin D was associated with lower odds of migraine headache.

Related Formulas

Related Terms

A patient with the disease or outcome of interest.

Confounding

When an exposure and an outcome are both strongly associated with a third variable.

A patient who does not have the disease or outcome.

Matched Design

Each case is matched individually with a control according to certain characteristics such as age and gender. It is important to remember that the concordant pairs (pairs in which the case and control are either both exposed or both not exposed) tell us nothing about the risk of exposure separately for cases or controls.

Observed Assignment

The method of assignment of individuals to study and control groups in observational studies when the investigator does not intervene to perform the assignment.

Unmatched Design

The controls are a sample from a suitable non-affected population.

Now test yourself!

1. Case Control Studies are prospective in that they follow the cases and controls over time and observe what occurs.

a) True b) False

2. Which of the following is an advantage of Case Control Studies?

a) They can simultaneously look at multiple risk factors. b) They are useful to initially establish an association between a risk factor and a disease or outcome. c) They take less time to complete because the condition or disease has already occurred. d) b and c only e) a, b, and c

← Previous Next →

© 2011-2019, The Himmelfarb Health Sciences Library Questions? Ask us .

Creative Commons License

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Epidemiology in Practice: Case-Control Studies

Introduction.

A case-control study is designed to help determine if an exposure is associated with an outcome (i.e., disease or condition of interest). In theory, the case-control study can be described simply. First, identify the cases (a group known to have the outcome) and the controls (a group known to be free of the outcome). Then, look back in time to learn which subjects in each group had the exposure(s), comparing the frequency of the exposure in the case group to the control group.

By definition, a case-control study is always retrospective because it starts with an outcome then traces back to investigate exposures. When the subjects are enrolled in their respective groups, the outcome of each subject is already known by the investigator. This, and not the fact that the investigator usually makes use of previously collected data, is what makes case-control studies ‘retrospective’.

Advantages of Case-Control Studies

Case-control studies have specific advantages compared to other study designs. They are comparatively quick, inexpensive, and easy. They are particularly appropriate for (1) investigating outbreaks, and (2) studying rare diseases or outcomes. An example of (1) would be a study of endophthalmitis following ocular surgery. When an outbreak is in progress, answers must be obtained quickly. An example of (2) would be a study of risk factors for uveal melanoma, or corneal ulcers. Since case-control studies start with people known to have the outcome (rather than starting with a population free of disease and waiting to see who develops it) it is possible to enroll a sufficient number of patients with a rare disease. The practical value of producing rapid results or investigating rare outcomes may outweigh the limitations of case-control studies. Because of their efficiency, they may also be ideal for preliminary investigation of a suspected risk factor for a common condition; conclusions may be used to justify a more costly and time-consuming longitudinal study later.

Consider a situation in which a large number of cases of post-operative endophthalmitis have occurred in a few weeks. The case group would consist of all those patients at the hospital who developed post-operative endophthalmitis during a pre-defined period.

The definition of a case needs to be very specific:

There are not necessarily any ‘right’ answers to these questions but they must be answered before the study begins. At the end of the study, the conclusions will be valid only for patients who have the same sort of ‘endophthalmitis’ as in the case definition.

Controls should be chosen who are similar in many ways to the cases. The factors (e.g., age, sex, time of hospitalisation) chosen to define how controls are to be similar to the cases are the ‘matching criteria’. The selected control group must be at similar risk of developing the outcome; it would not be appropriate to compare a group of controls who had traumatic corneal lacerations with cases who underwent elective intraocular surgery. In our example, controls could be defined as patients who underwent elective intraocular surgery during the same period of time.

Matching Cases and Controls

Although controls must be like the cases in many ways, it is possible to over-match. Over-matching can make it difficult to find enough controls. Also, once a matching variable has been selected, it is not possible to analyse it as a risk factor. Matching for type of intraocular surgery (e.g., secondary IOL implantation) would mean including the same percentage of controls as cases who had surgery to implant a secondary IOL; if this were done, it would not be possible to analyse secondary IOL implantation as a potential risk factor for endophthalmitis.

An important technique for adding power to a study is to enroll more than one control for every case. For statistical reasons, however, there is little gained by including more than two controls per case.

Collecting Data

After clearly defining cases and controls, decide on data to be collected; the same data must be collected in the same way from both groups. Care must be taken to be objective in the search for past risk factors, especially since the outcome is already known, or the study may suffer from researcher bias. Although it may not always be possible, it is important to try to mask the outcome from the person who is collecting risk factor information or interviewing patients. Sometimes it will be necessary to interview patients about potential factors (such as history of smoking, diet, use of traditional eye medicines, etc.) in their past. It may be difficult for some people to recall all these details accurately. Furthermore, patients who have the outcome (cases) are likely to scrutinize the past, remembering details of negative exposures more clearly than controls. This is known as recall bias. Anything the researcher can do to minimize this type of bias will strengthen the study.

Analysis; Odds Ratios and Confidence Intervals

In the analysis stage, calculate the frequency of each of the measured variables in each of the two groups. As a measure of the strength of the association between an exposure and the outcome, case-control studies yield the odds ratio. An odds ratio is the ratio of the odds of an exposure in the case group to the odds of an exposure in the control group. It is important to calculate a confidence interval for each odds ratio. A confidence interval that includes 1.0 means that the association between the exposure and outcome could have been found by chance alone and that the association is not statistically significant. An odds ratio without a confidence interval is not very meaningful. These calculations are usually made with computer programmes (e.g., Epi-Info). Case-control studies cannot provide any information about the incidence or prevalence of a disease because no measurements are made in a population based sample.

Risk Factors and Sampling

Another use for case-control studies is investigating risk factors for a rare disease, such as uveal melanoma. In this example, cases might be recruited by using hospital records. Patients who present to hospital, however, may not be representative of the population who get melanoma. If, for example, women present less commonly at hospital, bias might occur in the selection of cases.

The selection of a proper control group may pose problems. A frequent source of controls is patients from the same hospital who do not have the outcome. However, hospitalised patients often do not represent the general population; they are likely to suffer health problems and they have access to the health care system. An alternative may be to enroll community controls, people from the same neighborhoods as the cases. Care must be taken with sampling to ensure that the controls represent a ‘normal’ risk profile. Sometimes researchers enroll multiple control groups . These could include a set of community controls and a set of hospital controls.

Confounders

Matching controls to cases will mitigate the effects of confounders . A confounding variable is one which is associated with the exposure and is a cause of the outcome. If exposure to toxin ‘X’ is associated with melanoma, but exposure to toxin ‘X’ is also associated with exposure to sunlight (assuming that sunlight is a risk factor for melanoma), then sunlight is a potential confounder of the association between toxin ‘X’ and melanoma.

Case-control studies may prove an association but they do not demonstrate causation. Consider a case-control study intended to establish an association between the use of traditional eye medicines (TEM) and corneal ulcers. TEM might cause corneal ulcers but it is also possible that the presence of a corneal ulcer leads some people to use TEM. The temporal relationship between the supposed cause and effect cannot be determined by a case-control study.

Be aware that the term ‘case-control study’ is frequently misused. All studies which contain ‘cases’ and ‘controls’ are not case-control studies. One may start with a group of people with a known exposure and a comparison group (‘control group’) without the exposure and follow them through time to see what outcomes result, but this does not constitute a case-control study.

Case-control studies are sometimes less valued for being retrospective. However, they can be a very efficient way of identifying an association between an exposure and an outcome. Sometimes they are the only ethical way to investigate an association. If care is taken with definitions, selection of controls, and reducing the potential for bias, case-control studies can generate valuable information.

Case-Control Studies: Advantages and Disadvantages

Recommended Reading

Quantitative Study Designs: Case Control

Quantitative study designs.

Case Control

In a Case-Control study there are two groups of people: one has a health issue (Case group), and this group is “matched” to a Control group without the health issue based on characteristics like age, gender, occupation. In this study type, we can look back in the patient’s histories to look for exposure to risk factors that are common to the Case group, but not the Control group. It was a case-control study that demonstrated a link between carcinoma of the lung and smoking tobacco . These studies estimate the odds between the exposure and the health outcome, however they cannot prove causality. Case-Control studies might also be referred to as retrospective or case-referent studies. 

Stages of a Case-Control study

This diagram represents taking both the case (disease) and the control (no disease) groups and looking back at their histories to determine their exposure to possible contributing factors.  The researchers then determine the likelihood of those factors contributing to the disease.

case control research question examples

(FOR ACCESSIBILITY: A case control study is likely to show that most, but not all exposed people end up with the health issue, and some unexposed people may also develop the health issue)

Which Clinical Questions does Case-Control best answer?

Case-Control studies are best used for Prognosis questions.

For example: Do anticholinergic drugs increase the risk of dementia in later life? (See BMJ Case-Control study Anticholinergic drugs and risk of dementia: case-control study )

What are the advantages and disadvantages to consider when using Case-Control?

* Confounding occurs when the elements of the study design invalidate the result. It is usually unintentional. It is important to avoid confounding, which can happen in a few ways within Case-Control studies. This explains why it is lower in the hierarchy of evidence, superior only to Case Studies.

What does a strong Case-Control study look like?

A strong study will have:

What are the pitfalls to look for?

Critical appraisal tools 

To assist with critically appraising case control studies there are some tools / checklists you can use.

CASP - Case Control Checklist

JBI – Critical appraisal checklist for case control studies

CEBMA – Centre for Evidence Based Management  – Critical appraisal questions (focus on leadership and management)

STROBE - Observational Studies checklists includes Case control

SIGN - Case-Control Studies Checklist

NCCEH - Critical Appraisal of a Case Control Study for environmental health

Real World Examples

Smoking and carcinoma of the lung; preliminary report

Anticholinergic drugs and risk of dementia: case-control study

Omega-3 deficiency associated with perinatal depression: Case-Control study 

References and Further Reading

Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung; preliminary report. British Medical Journal, 2(4682), 739–748. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038856/

Greenhalgh, Trisha. How to Read a Paper: the Basics of Evidence-Based Medicine, John Wiley & Sons, Incorporated, 2014. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/deakin/detail.action?docID=1642418 .

Himmelfarb Health Sciences Library. (2019). Study Design 101: Case-Control Study. Retrieved from https://himmelfarb.gwu.edu/tutorials/studydesign101/casecontrols.cfm   

Hoffmann, T., Bennett, S., & Del Mar, C. (2017). Evidence-Based Practice Across the Health Professions (Third edition. ed.): Elsevier. 

Lewallen, S., & Courtright, P. (1998). Epidemiology in practice: case-control studies. Community Eye Health, 11(28), 57.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706071/  

Pelham, B. W. a., & Blanton, H. (2013). Conducting research in psychology : measuring the weight of smoke /Brett W. Pelham, Hart Blanton (Fourth edition. ed.): Wadsworth Cengage Learning. 

Rees, A.-M., Austin, M.-P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Research, 166(2), 254-259. Retrieved from http://www.sciencedirect.com/science/article/pii/S0165178107004398

Richardson, K., Fox, C., Maidment, I., Steel, N., Loke, Y. K., Arthur, A., … Savva, G. M. (2018). Anticholinergic drugs and risk of dementia: case-control study. BMJ, 361, k1315. Retrieved from http://www.bmj.com/content/361/bmj.k1315.abstract

Statistics How To. (2019). Case-Control Study: Definition, Real Life Examples. Retrieved from https://www.statisticshowto.datasciencecentral.com/case-control-study/  

Case-control studies

Selection of cases, selection of controls, ascertainment of exposure, cross sectional studies.

Follow us on

Content links.

Explore BMJ

Information

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

What Is a Case-Control Study? | Definition & Examples

Published on February 4, 2023 by Tegan George .

A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the “case,” and those without it are the “control.”

It’s important to remember that the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

Table of contents

When to use a case-control study, examples of case-control studies, advantages and disadvantages of case-control studies, frequently asked questions.

Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative , and they often are in healthcare settings. Case-control studies can be used for both exploratory and explanatory research , and they are a good choice for studying research topics like disease exposure and health outcomes.

A case-control study may be a good fit for your research if it meets the following criteria.

Retrospective cohort studies use existing secondary research data, such as medical records or databases, to identify a group of people with a common exposure or risk factor and to observe their outcomes over time. Case-control studies conduct primary research , comparing a group of participants possessing a condition of interest to a very similar group lacking that condition in real time.

Case-control studies are common in fields like epidemiology, healthcare, and psychology.

You would then collect data on your participants’ exposure to contaminated drinking water, focusing on variables such as the source of said water and the duration of exposure, for both groups. You could then compare the two to determine if there is a relationship between drinking water contamination and the risk of developing a gastrointestinal illness. Example: Healthcare case-control study You are interested in the relationship between the dietary intake of a particular vitamin (e.g., vitamin D) and the risk of developing osteoporosis later in life. Here, the case group would be individuals who have been diagnosed with osteoporosis, while the control group would be individuals without osteoporosis.

You would then collect information on dietary intake of vitamin D for both the cases and controls and compare the two groups to determine if there is a relationship between vitamin D intake and the risk of developing osteoporosis. Example: Psychology case-control study You are studying the relationship between early-childhood stress and the likelihood of later developing post-traumatic stress disorder (PTSD). Here, the case group would be individuals who have been diagnosed with PTSD, while the control group would be individuals without PTSD.

What can proofreading do for your paper?

Scribbr editors not only correct grammar and spelling mistakes, but also strengthen your writing by making sure your paper is free of vague language, redundant words, and awkward phrasing.

case control research question examples

See editing example

Case-control studies are a solid research method choice, but they come with distinct advantages and disadvantages.

Advantages of case-control studies

Disadvantages of case-control studies

Case-control studies by design focus on one singular outcome. This makes them very rigid and not generalizable , as no extrapolation can be made about other outcomes like risk recurrence or future exposure threat. This leads to less satisfying results than other methodological choices.

A case-control study differs from a cohort study because cohort studies are more longitudinal in nature and do not necessarily require a control group .

While one may be added if the investigator so chooses, members of the cohort are primarily selected because of a shared characteristic among them. In particular, retrospective cohort studies are designed to follow a group of people with a common exposure or risk factor over time and observe their outcomes.

Case-control studies, in contrast, require both a case group and a control group, as suggested by their name, and usually are used to identify risk factors for a disease by comparing cases and controls.

A case-control study differs from a cross-sectional study because case-control studies are naturally retrospective in nature, looking backward in time to identify exposures that may have occurred before the development of the disease.

On the other hand, cross-sectional studies collect data on a population at a single point in time. The goal here is to describe the characteristics of the population, such as their age, gender identity, or health status, and understand the distribution and relationships of these characteristics.

Cases and controls are selected for a case-control study based on their inherent characteristics. Participants already possessing the condition of interest form the “case,” while those without form the “control.”

Keep in mind that by definition the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

The strength of the association between an exposure and a disease in a case-control study can be measured using a few different statistical measures , such as odds ratios (ORs) and relative risk (RR).

No, case-control studies cannot establish causality as a standalone measure.

As observational studies , they can suggest associations between an exposure and a disease, but they cannot prove without a doubt that the exposure causes the disease. In particular, issues arising from timing, research biases like recall bias , and the selection of variables lead to low internal validity and the inability to determine causality.

Sources in this article

We strongly encourage students to use sources in their work. You can cite our article (APA Style) or take a deep dive into the articles below.

George, T. (2023, February 04). What Is a Case-Control Study? | Definition & Examples. Scribbr. Retrieved March 18, 2023, from https://www.scribbr.com/methodology/case-control-study/
Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis (Monographs in Epidemiology and Biostatistics, 2) (Illustrated). Oxford University Press.

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is an observational study | guide & examples, control groups and treatment groups | uses & examples, cross-sectional study | definition, uses & examples, what is your plagiarism score.

IMAGES

  1. Case-control Study

    case control research question examples

  2. Study design: from questions to projects

    case control research question examples

  3. Study case control design

    case control research question examples

  4. Critical-Appraisal-Questions-for-a-Case-Control-Study.pdf

    case control research question examples

  5. Categories and examples of research questions most frequently suggested...

    case control research question examples

  6. 4. case control studies

    case control research question examples

VIDEO

  1. Approaching Case Studies

  2. Controlling Case Studies 7 to 12

  3. Case Study 1

  4. BLACK GROUP CASE ANALYSIS PRESENTATION

  5. Case Control Study

  6. Narrowing down a topic: How to Narrow Down the Topic

COMMENTS

  1. Example of a Case-Control Study

    The Salmonella outbreak above occurred in a small, well-defined cohort, and the overall attack rate was 58%. A cohort study design works well in

  2. Case-Control Studies

    The odds ratio is interpreted the same way as other ratio measures (risk ratio, rate ratio, etc.). For example, investigators conducted a case-control study to

  3. Case Control

    Does it use appropriate inclusion and exclusion criteria? Fictitious Example. There is a suspicion that zinc oxide, the white non-absorbent sunscreen

  4. Methodology Series Module 2: Case-control Studies

    Case-Control study design is a type of observational study. In this design, participants are selected for the study based on their outcome status.

  5. Epidemiology in Practice: Case-Control Studies

    Another use for case-control studies is investigating risk factors for a rare disease, such as uveal melanoma. In this example, cases might be recruited by

  6. Case Control

    Real World Examples · Key Case-Control study linking tobacco smoking with lung cancer · Notes a marked increase in incidence of Lung Cancer disproportionate to

  7. Chapter 8. Case-control and cross sectional studies

    To give an extreme example, a case-control study of bladder cancer and smoking could give quite erroneous findings if controls were taken from the chest

  8. What Is a Case-Control Study?

    Case-control studies are common in fields like epidemiology, healthcare, and psychology. Example: Epidemiology case-control study You are

  9. Case Control Study: Definition, Benefits & Examples

    For example, medical researchers study disease X and use a case-control study design to identify risk factors. They create two groups using available

  10. Unit 14 Exercises (Case-Control Studies)

    (14.3) DOLL1950: An early case-control studies of smoking and lung cancer found 647 of the 649 lung cancer cases were smokers while 622 of the 649 controls were